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Two-dimensional space-periodic capillary-gravity waves at the interface between two 
fluids of different densities are considered when the second harmonic and the funda- 
mental mode are near resonance. A weakly nonlinear analysis provides the equations 
(normal form), correct to third order, that relate the wave frequency with the am- 
plitudes of the fundamental mode and of the second harmonic for all waves with 
small energy. A study of the normal form for waves which are also periodic in 
time reveals three possible types of space- and time-periodic waves: the well-known 
travelling and standing waves as well as an unusual class of three-mode mixed waves. 
Mixed waves are found to provide a connection between standing and travelling 
waves. The branching behaviour of all types of waves is shown to depend strongly 
on the density ratio. For travelling waves the weakly nonlinear results are confirmed 
numerically and extended to finite-amplitude waves. When slow modulations in time 
of the amplitudes are considered, a powerful geometrical method is used to study the 
resulting normal form. Finally a discussion on modulational stability suggests that 
increasing the density ratio has a stabilizing effect. 

1. Introduction 
Our purpose here is to study in detail all types of two-dimensional space- and 

time-periodic capillary-gravity interfacial waves when the second harmonic resonates 
with the fundamental mode. Such a resonance has been thoroughly studied in the case 
of travelling water waves. However, considering all types of space- and time-periodic 
waves and including the density ratio as an extra parameter reveal new results. 

To begin, consider a two-dimensional capillary-gravity interfacial wave, which is 
periodic in space with wavenumber k and in time with frequency o. Both fluids are 
supposed to be of infinite depth. A dimensionless parameter which is commonly used 
to define the relative importance of gravity and surface tension is the number 

k20  
b =  

(P - P ’ k  ’ 
where (T is the syrface tension at the interface, p is the density of the lower fluid, p’ 
is the density of the upper fluid and g is the acceleration due to gravity. 

When b = i, the fundamental mode and the second harmonic are resonantly 
coupled. A natural way to explain this phenomenon is to consider the linearization 
of the interfacial wave problem. The wavenumber k and the linear frequency 00 must 
then satisfy the linear dispersion relation 

002 = egk( 1 + b)  , (1.2) 
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where 

e = (P  - P ’ H P  + P’) . (1.3) 

If nonlinear terms are included in the equations, the quadratic terms excite time- 
independent and second-harmonic components of wavenumber 2k and frequency 
2u0. In general, the fundamental mode and the second harmonic are uncoupled, but 
if the wavenumber 2k and the frequency 200 also satisfy the dispersion relation (1.2) 
the two modes resonate and their amplitudes are of the same order of magnitude. 
Such resonance occurs only if b = i. 

Waves characterized by two dominant modes are often called Wilton’s ripples in 
the literature in reference to Wilton’s (1915) paper. It turns out that the phenomenon 
described as Wilton’s ripples was discussed at least twice prior to Wilton’s paper: in 
an unpublished addendum to an essay that Bohr (1906) wrote in order to win the 
Royal Danish Academy Prize on the theme ‘The surface tension of water’ and in a 
paper by Harrison (1909). 

The references mentioned in this paragraph all deal with water waves. Pierson & 
Fife (1961) studied travelling Wilton’s ripples in infinite depth by using a classical 
perturbation expansion of the elevation of the interface q ,  the velocity potential 
and the phase velocity of the wave c, which they modified accordingly when b = k. 
Their analysis is valid up to second order (except for a constant that they did not 
compute). They also did a wavenumber perturbation analysis to study waves with 
wavenumbers close but not equal to the wavenumber corresponding to b = i. Barakat 
& Houston (1968) extended the analysis of Pierson & Fife to finite depth while Nayfeh 
(1970) extended the results of Barakat & Houston to third order. Simmons (1969) 
and McGoldrick (1970 b) analysed Wilton’s ripples and their dynamics in the more 
general framework of resonant wave interactions. Simmons, whose analysis is based 
on a variational method and McGoldrick, whose analysis is based on the method 
of multiple time and space scales, both obtained equations for slow modulations in 
space and in time of the amplitudes of the fundamental mode and of the second 
harmonic. McGoldrick (1970 b)  showed that Wilton’s ripples are in fact solutions 
to the amplitude equations for special initial values. Standing Wilton’s ripples have 
been considered by Vanden-Broeck (1984) through a classical perturbation analysis. 
Chen & Saffman (1979) studied the more general problem of travelling waves with 
two dominant modes by using a formal perturbation procedure. They showed that 
the Wilton’s ripple phenomenon is in fact associated with a bifurcation in which 
a wave of permanent form can double its period, and that so-called combination 
( M , N )  waves are possible for all sets of positive integers M and N for appropriate 
values of b. Reeder & Shinbrot (1981 a )  transformed the fluid domain into a fixed 
one and studied Wilton’s ripples both in two and three dimensions. Reeder & 
Shinbrot (1981 b)  provided the first rigorous theory of Wilton’s ripples. Toland & 
Jones (1985) and Jones & Toland (1986) used an integral equation formulation of the 
water-wave problem and gave a systematic description of combination waves as an 
aspect of bifurcation theory in the presence of symmetries. They reduced the problem 
by the Lyapunov-Schmidt procedure. Jones (1989) extended the previous work to 
waves in finite water depth. Aston (1991) considered the structure of combination 
(1,N) waves with N larger than four. He studied the effect of higher-order terms 
in the bifurcation equations. Aston (1993) attempted an extensive description of the 
amazingly large number of travelling wave solutions to the capillary-gravity wave 
problem by following two-parameter paths of turning and bifurcation points which 
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originate at the trivial solution at points of mode interaction. Bridges (1990) based 
his study of all space- and time-periodic combination waves on their symmetries and 
on the Hamiltonian structure of the water-wave problem. The idea of considering 
all types of periodic waves, and not travelling waves nor standing waves in isolation, 
goes back to Rayleigh (1915). In the no-resonance case, Rayleigh showed that indeed 
there are only two possible types of space- and time-periodic waves: travelling waves 
and standing waves. In the case where two modes resonate, Bridges (1990) showed 
that in addition to well-known travelling and standing waves other classes of periodic 
waves, in particular three-mode mixed waves, may exist. Our analysis includes such 
waves for the 1:2 resonance. 

McGoldrick’s (1970 b)  results for water waves have been extended to travelling 
interfacial waves by Nayfeh & Saric (1972). Bontozoglou & Hanratty (1990) used the 
variational method developed by Miles (1986) to extend the results to third order for 
periodic waves without the inclusion of time and space modulations. 

Numerical results for waves near resonance include those of Schwartz & Vanden- 
Broeck (1979), Chen & Saffman (1980), Vanden-Broeck (1980 a), Hogan (1981), 
Vanden-Broeck (1984) for standing waves, and Vanden-Broeck (1980 b)  and Bonto- 
zoglou & Hanratty (1990) for interfacial waves. 

The stability of travelling capillary-gravity waves has been studied extensively. It is 
well-known that the modulations of a train of weakly nonlinear waves in deep water 
are governed by a nonlinear Schrodinger equation, which can be derived for example 
by the method of multiple scales in time and in space (Kawahara 1975; Djordjevic 
& Redekopp 1977). However, the derivation is invalid near the second-harmonic 
resonance. McGoldrick (1970 b) obtained a system of two equations governing the 
space and time modulations of travelling Wilton’s ripples (at order two). These 
equations, which also appear in other physical systems, have been studied in detail 
(see Craik 1985 for a review). Jones (1992) used the method of multiple scales to extend 
McGoldrick‘s work to third order and obtained a pair of coupled nonlinear partial 
differential equations, which he solved only for special cases (periodic solutions). 
The nonlinear Schrodinger equation admits several types of analytical solutions (see 
Peregrine 1983 for a review). To our knowledge, analytical solutions to Jones’ coupled 
equations have not been studied yet. The stability of gravity interfacial waves has 
also been studied (see Grimshaw & Pullin 1985 for analytical results based on a 
multiple scale expansion, Pullin & Grimshaw 1985 for numerical results, Dixon 1990 
and Zhou, Lee & Cheung 1992 for results based on the Zakharov equation). Nayfeh 
& Saric (1972) conducted a nonlinear stability analysis of capillary-gravity interfacial 
waves by using the method of multiple scales. 

Travelling Wilton’s ripples have been observed experimentally (McGoldrick 1970a; 
Henderson & Hammack 1987; Perlin & Hammack 1991) and it appears that the 1:2 
internal resonance can be excited by waves with surprisingly small steepnesses. A 
detailed description of the experiments can be found in the review article by Hammack 
& Henderson (1993). Perlin & Ting (1992) performed systematic experiments in the 
1 :2 resonance regime. In their conclusions, they state that ‘the experimental results 
(symmetric part) are in general agreement with the results of Schwartz & Vanden- 
Broeck and Chen & Saffman.’ All the above experiments are concerned with water 
waves. Capillary-gravity interfacial waves have also been studied experimentally, 
especially in relation to the Kelvin-Helmholtz instability. The importance of the 
1 :2 resonance in gas-liquid flows has been emphasized by Bontozoglou & Hanratty 
(1990). Experiments by Thorpe (1969) and Pouliquen et al. (1992) show that surface 
tension can be an important factor for waves propagating at the interface between 
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two fluids with almost the same density and that viscous dissipation can be negligible 
under certain circumstances. 

The problem is formulated in $2. A weakly nonlinear analysis provides the normal 
form (truncated at third order), i.e. the equations relating the frequency to the 
amplitudes of the wave, valid for all space- and time-periodic waves with small 
energy. The normal form is studied for each class of periodic waves (travelling waves 
in $ 3, standing waves in $ 5 and mixed waves in $ 6). The analysis is performed first 
at exact resonance ( b  = i) and then near resonance ( b  in a neighbourhood of k). The 
density ratio is shown to play an important role. In particular, if the ratio is close to 
one, the behaviour of travelling or standing Wilton’s ripples is more complicated than 
in the water-wave case because of the existence of several bifurcations. The analysis 
also reveals the existence of several branches of mixed waves which connect branches 
of travelling and standing waves. Finite-amplitude travelling waves are computed 
numerically in $4. In $7, a powerful geometrical method, which has been recently 
applied to the study of dynamical systems with symmetries, is used to analyse the 
effects of slow modulations in time of the wave amplitudes. A discussion on stability, 
dissipation and experiments in relation to resonant capillary-gravity interfacial waves 
is given in $8. 

2. Problem formulation and weakly nonlinear analysis 
A fluid of density pl lies on top of a heavier fluid of density p. The line y = 0 

represents the interface at rest. When in motion, the interface is described by 
y = q(x,t), where x denotes the horizontal coordinate. Both fluids are inviscid and 
incompressible. The flows in each fluid are assumed to be two-dimensional and 
irrotational. Therefore, velocity potentials are introduced in each fluid. The governing 
equations are given by 

v . ii = v24 = 0,  v .  $1 = v241= 0, (2.1) 

where Zi and ii’ are the velocities of the lower and upper fluids respectively, generated 
by corresponding potentials 4 and #, subject to the conditions 

At the interface y = ~ ( x ,  t ) ,  the kinematic and dynamic conditions are given by 

Y t  = @(y)  - Yx@(x) = @iy) - Yx@(x) > 

P (@@I + kI.1’) -PI ( @ i t )  + 21u I ) + g(P - P’)Y - CT 
(1 + q$ 

where @(*) = 4(.)(X, Y, t ) ,  q*) = 4;*)(x, Y, t ) ,  24 = @, Y, t ) ,  u’ = C1(X, Y, t).  

(2.3) 

and 

= 0 ,  (2.4) 1 I 2  Yxx 

The above problem has a Hamiltonian formulation (Benjamin & Bridges 1991) 
given by 

with the derivatives 6 as variational derivatives. The canonical variable 
equal to p@ - pl@. The Hamiltonian H is the sum of the kinetic energy 

Y t  = 6H( i ,  Y ) l @  > it = -6H(i, Y ) l S Y  7 (2.5) 
in (2.5) is 

K(4,4’,  Y)  = lL [Iv -m &lV412 dy + l+m ip’IV4’l2 dy] dx (2.6) 
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L 

V ( q ) = /  0 [ ~ ( p - p ' ) g q 2 + a ( ( 1 + q ~ ) ' - l ) ]  dx. (2.7) 

Spatial periodicity with wavelength L and wavenumber k = 2 n / L  is assumed in the 
x-direction. In (2.6), the kinetic energy is given as a function of 4 and 4. To prove 
that 4 and q5' only appear in the combination c can be done by using the calculus of 
variations. That is, K ( c ,  q )  is obtained as the minimum of K(4 ,4 ' ,  q )  with q fixed on 
the constant set p@ - p'@' = c .  

The above Hamiltonian formulation has an equivalent Lagrangian formulation : 
the set of equations (2.5) can be recovered from setting the first variation of 

2 = 1" (K(qt7v) - V h ) )  dt (2.8) 

equal to zero. The link between qt and is provided by 

qt = aK(r7 r l ) lSY * (2.9) 
With the restriction to space- and time-periodic functions, the canonical variables 

q(x, t )  and c(x, t )  can be formally identified with a double Fourier series expansion in 
x and in t. For computational purposes, the Fourier series are restricted to N terms. 
In Appendix A, we show how to compute K ( [ ,  q )  in terms of the Fourier coefficients 
of the expansions of [ and q in x, and how to eliminate 5 in order to obtain K(qt,q). 
For the weakly nonlinear analysis performed in this paper, it is sufficient to take 
N = 4. In Appendix A, the Lagrangian K - V is also computed and integrated 
over a time period to give the functional 2. The coefficients of the third and fourth 
harmonic are then eliminated. Dimensionless variables are introduced by choosing 
l / k  as unit length and (gk);  as unit frequency. The resulting expression for 9, which 
has been divided by 

1 
n2(p + p')gkK3w-'(gk)-2, (2.10) 

where o now denotes the dimensionless frequency, is 

2 = (a2 - e(l + b)) El + ( 2 0 ~  - e(l + 4b)) E2 - fQw2S 

- e [EiiE: + PiiMT + a22E: + P22M: + 2~12E1E2 + 2P12M1M2] + . . . . (2.11) 

The dots denote higher-order terms. The full expressions for the coefficients aIJ and 
Pi], which depend on b (l.l), e (1.3) and 02, can be found in Appendix B. The 
quantities El ,  Ez ,  MI, M2, S are given by 

E, = I A , I ~  + I B , ~ ~  ( i  = 1,2) , (2.12) 
M ,  = I B , ~ ~  - I A , ~ ~  ( i  = 1,2), (2.13) 

(2.14) S = A:& + x 2 A 2  + B : K  + F2B2 , 
where the coefficients A, and B, are the first-order complex Fourier coefficients of 

q = Re [Ale-l(Ot-x) + Ble-I(Wf+X) + A2e-1(2wt-2x) + Bze-1(20f+2x) + . (2.15) 

The fact that the amplitudes A,  and B, only appear in the combinations El ,  M ,  and 
S comes from the symmetries of the problem. In fact Bridges (1990) obtained the 
expression for 2 simply by considering the symmetries of the water-wave problem, 
without using the equations. But the equations of the problem are of course needed 
in order to compute the values of the coefficients in terms of the physical parameters. 
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The normal form, i.e. the system of equations that relates the complex amplitudes 
A ~ , B I , A ~ , B ~  to the angular frequency W ,  is obtained by setting the derivatives of 
2 in (2.11) with respect to Al,B1,A2,B2 and their conjugates to zero. We obtain 
eight equations but only four are listed below (since the other four are their complex 
conjugates) : 

(w’ - e( 1 + b)) A1 - Q C O ~ ~ A ~  - 2~A1 (allE1 - PllMl + ~ ( 1 2 ~ 5 2  - P12M2) + * * . = 0, 

(2w2 - e( 1 + 4b)) A2 - iew2At - 2eA2 (a12E1 - P12M1 + ~122E2 - P22M2) + . * . = 0, 
( 2 0 ~  - e(l + 4b)) B2 - ieW2Bf - 2~B2 (a12E1 + P12M1 + a22E2 + P22M2) + . . . = O, 0. 1 (a2 - @ ( I +  b)) B1- @a2%’& - 2~B1 (aiiEi + PllMl+ a12E2 + P12M2) + * .  . = 

(2.16) 

Similar equations restricted to travelling waves have been obtained previously by 
Nayfeh (1970) and Bontozoglou & Hanratty (1990). The system of equations (2.16) 
can be used to compute 9 at the stationary points corresponding to the periodic 
solutions. One finds 

2 = iew2S + e [~11E: + P11M: + ~122E; + P22M; + 2a12E1E2 + 2P12MlM21 + . * * . 
The total energy Z, equal to the integral over a time period of the Hamiltonian H ,  
is (after being divided by 2.10) 

Z = 2 ~ ( 1 +  b)El + 2 ~ ( 1 +  4b)E2 + ieW2S 
H 2  + e [aiiEi + P:M: + EEE; + P,H,M; + 2aEE1E2 + 2PEMiM2] +.  . . , (2.17) 

where the expressions for the coefficients a; and p! appearing inside the brackets 
can be found in Appendix C. 

The normal form (2.16) for all periodic solutions can be rewritten in terms of 
amplitude and phase. Letting Ai = aieiqP ,Bi  = bieiqP yields 

1 (a2 - d l  + b))  a1 f ew2a1a2 - 2 ~ ~ 1  (allE1 - PllMl + - P12M2) + . * * = 0, 
(0’ - dl + b) )  bl f eu2bib2 - 2ebi (aiiEi + PiiMi + ai2E2 + P12M2) + . * .  = 0, 
(2U2 - @(I + 4b)) a2 T ieW2a: - 2 ~ ~ 2  (~12E1 - P12M1 + ~22E2 - P22M2) + . . . = 0, 
(2m2 - @ ( I +  4b)) b2 f iem2bi  - 2 ~ b 2  (a12El + P12M1 + ~ 2 E 2  + P22M2) + . . . = 0. 

(2.18) 

In the first and third equations, the minus sign must be used if cos(& - 2q;l) = 1 
while the plus sign must be used if cos(@ - 2q;l) = -1. In the second and fourth 
equations, the minus sign must be used if cos(cp: - 2 4 4  = 1 while the plus sign must 
be used if cos(q$ - 2q.1:) = -1. 

A look at the linearization of the normal form, 

where wo denotes the linear frequency, shows that there are three cases to consider 
besides the trivial solution (Al, B1,A2, B2) = (O,O, 0,O): 1-waves, (1,2)-waves and 
2-waves. 

( a )  Reduction f o r  1-waves 

This case corresponds to 002 = e( 1 + b) while 20; # e( 1 + 4b). In the linearization, 
the coefficients of the second harmonic must be zero, which explains the terminology 
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1-wave. If quadratic terms are added, the third and fourth equations of the normal 
form (2.16) show that the coefficients A2 and B2 of the second harmonic are of the 
order of the square of the coefficients Al and B1 of the fundamental mode: 

e B : + . . .  , l + b  
B -  

- 2(1 - 2b) 
l + b  @ A ; +  . . . ,  

A2 = 2(1 - 2b) 

where o2 has been replaced by 0;. Replacing A2 and B2 in the first two equations 
modifies the coefficients of A1lA1l2 and B1lB1l2 in the cubic terms and results in the 
normal form obtained by Dias & Bridges (1994): 

The quadratic terms have disappeared. The coefficients all and P11 are given in 
Appendix B. It can be shown that there are two types of solutions: travelling 
waves (TWs), characterized by A1 or B1 equal to zero, and standing waves (SWs), 
characterized by lAll = 1B11, unless 

= 0 .  (1 + b)2 
2P11 4- 4( 1 - 2b) 

(2.19) 

If the last condition is satisfied, both equations become identical and higher-order 
terms are needed (see Dias & Bridges 1994 for a detailed study of this degeneracy). 

(b) Reduction for (1,2)-waves 

This case, which corresponds to 00” = e( 1 + b)  and 20; = e( 1 + 4b) being satisfied 
simultaneously, occurs when b = i. The coefficients of the fundamental mode and 
of the second harmonic are of the same order, which explains the terminology (1,2)- 
wave. If the normal form is truncated so that only the linear and quadratic terms are 
retained, one obtains 

( 0 2  - +@) A1 - QW2&42 = 0 ,  

( 0 2  - &) B1- @02%B2 = 0,  

(202 - 3 4  A2 - ;@o2A; = 0,  

(202 - 3 4  B2 - +@Co2B; = 0 .  

The equations can be combined to give 

lAll = 21A21, 

lBll = 21B21, 
sin( cp! - 29:) = 0, 
sin(q$ - 2cp3 = 0 .  

The effects of the cubic terms will be studied in the next sections. 

(c) Reduction for 2-waves 

This case corresponds to 20;  = e( 1 + 4b) while 0; # e( 1 + b). The coefficients of 
the fundamental mode are zero, which explains the terminology 2-wave. The third 
and fourth equations of the normal form become 

(202 - e(1 + 4b)) A2 - 2eA2 [(a22 + P22)IA2I2 + (a22 - P22)IB2I2] = 0 ,  

(202 - e(1 + 4b)) B2 - 2eB2 [(a22 - P22)IA2I2 + (a22 + P22)IB2I2] = 0 ,  
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where the coefficients a22 and p22 are given in Appendix B. The above equations are in 
fact equivalent to the equations for the 1-waves with the scaling 0 + ;co, k + i k  and 
as a consequence b + $b. The degeneracy condition (2.19) simply becomes p22  = 0. 

A 1-wave can become a (1,2)-wave and then a 2-wave in a continuous fashion. 
This phenomenon was well-described by Chen & Saffman (1979) who associated it 
with a bifurcation phenomenon in which a wave can double its wavelength. If cubic 
terms are neglected in (2.18), the normal form becomes 

2 (a2 - @(1 + b) )  a1 = +@a a1a2, 

( 0 2  - @(l + b)) bl = +@W2blb2, 

(202 - @(l + 4b)) a2 = - k z @ 0  1 2 2  a,, 

(2w2 - @( 1 + 4b)) b2 = +i@m2b:. 

Note that Nayfeh & Saric (1972) obtained a similar system for interfacial travelling 
waves, i.e. when either a1 or bl is zero (see their equations 5.11 and 5.12). Eliminating 
co2 yields 

+;@(I + b)a: = (1 - 2b)a2 & @(I + 4b)a; 
&;@(I + b)b: = (1 - 2b)b2 & + 4b)bi (if blb2 f 0). (2.21) 

(if a142 # O), (2.20) 

Let us consider for example the case of a travelling wave with bl = b2 = 0 and the 
plus signs in (2.20). If b is much smaller than i, a2 is of the order of a: and the wave 
is a 1-wave. As b approaches i, the term in a2 becomes small and a2 is of the order 
of al. A dip appears in the crest and the wave becomes a (1,2)-wave. As b increases 
even more, the dip becomes larger. The right-hand side of (2.20) eventually becomes 
equal to zero and the wave becomes a 2-wave. If the minus signs are chosen, the 
same behaviour occurs, except that one starts with values of b much larger than 
and then lets b decrease. 

In the following sections we study all solutions to the normal form (2.18). Bridges 
(1990) gave a classification of all solutions to normal forms for Hamiltonian systems 
with a mode interaction in the presence of the same symmetries as in the interfacial 
wave problem. In the particular case of the 1:2 resonance, Bridges found seven types 
of periodic solutions: three types of 2-waves (TW, SW and a degenerate wave when 
(2.19) is satisfied), three types of (1,2)-waves (one TWand two SWs), and mixed waves 
(MWs)  in which either al or bl is zero, the other three amplitudes being non-zero. 
The two types of (1,2)-SWs lie in fact on the same group orbit, so there is only one 
type of (1,2)-SWs to consider. Periodic 2-waves have been studied by Dias & Bridges 
(1994). The degenerate wave does not occur in the interfacial wave problem in the 
presence of the 1 :2 resonance, because the degeneracy condition is never satisfied for 
b in a neighbourhood of ;. Therefore, the study presented next focuses on three types 
of space- and time-periodic waves: (1,2)-TWs, (1,2)-SWs and MWs. 

3. Analysis of the normal form for travelling waves 
In this section, the normal form (2.18) derived in 0 2 is analysed for travelling waves. 

There are two types of TWs: TW+, travelling from left to right and characterized 
by B1 = B2 = 0, and TW-, travelling from right to left and characterized by 
A1 = A2 = 0. Without loss of generality, the analysis is restricted to TW+, the analysis 
for TW- being similar. The normal form, truncated at order three, reduces to two 



Resonant capillary-gravity interfacial waves 311 

equations 

(02 - e ( l+  b))  a1 - em2a1a2 - 2ea1 [(a11 + P l l b l +  (a12 + 812)a;I = 0,  (3.1) 

(202 - @ ( I +  4b)) a2 - ieo2a: - 2 ~ ~ 2  [(a12 + p 1 2 ) ~ :  + (a22 + p,,)~;] = 0.  (3.2) 

Note that the f sign in front of the quadratic terms in (2.18) has been replaced by 
a minus sign by allowing a2 to take negative values. Following a classification that 
is commonly used, we will refer to waves with a1 = 0 as 2-waves, to (1,2)-waves 
with a2 > 0 as g-like waves ( g  stands for gravity) and to (1,2)-waves with a2 < 0 
as c-like waves ( c  stands for capillary). The above equations agree with (3.9)-(3.10) 
in Bontozoglou & Hanratty (1990) (with no shear velocity between the layers). The 
energy of the wave is defined as E = El + 2E2 = a: + 2 4 ,  where El and E2 are 
defined in (2.12). Note that strictly speaking E is not the energy of the wave. The 
'real' energy is given by % (2.17). For the analysis, E is a simpler parameter to use. 
However, whenever comparison is made with numerical values of the energy, it is 
of course % which must be used. A detailed analysis of the solutions to (3.1)-(3.2) 
is provided below. The corresponding system for water waves (e = 1) has been 
studied rigorously by Jones & Toland (1986). They show that at exact resonance 
( b  = i) there are three solutions bifurcating from the trivial solution, one 2-wave 
and two (1,2)-waves, whereas near resonance there are two solutions bifurcating from 
the trivial solution, one 2-wave and one (1,2)-wave, and one (1,2)-wave coming from 
a secondary bifurcation point on the 2-wave branch. This local result also holds 
for interfacial waves, but we show in this section that the cubic terms can modify 
significantly the structure of the solutions, especially for small values of e. 

Solutions for o,al,a2 are found either by specifying b and e and using E as 
parameter, or by specifying e and E and using b as parameter. In order to find 
(1,2)-waves, (3.1) can be divided by al.  For 2-waves, the system reduces to the single 
equation 

It is easy to see that a bifurcation from a 2-wave to a (1,2)-wave will occur if the 
system 

202 - @( 1 + 4b) - 2e(a22 + p2,)a; = 0.  

o2 - e(1 + b) - eo2a2 - Q(a12 + pl2)a; = 0,  
2c02 - e( 1 + 4b) - 2e(a22 + p22)a; = 0,  

(3.3) 

(3.4) 
(3.5) 

has a non-trivial solution for given values of b and e. 
3.1. Analysis at resonance 

In this subsection, b is equal to i. If cubic terms are neglected in (3.1)-(3.2), there are 
two solutions for given values of e and E, a g-like wave and a c-like wave. However, 
if cubic terms are added, there might be three (1,2)-waves for particular values of 
the energy (in addition, of course, to the unique 2-wave solution). Two of the three 
are g-like waves, while the other is a d i k e  wave. The additional solution bifurcates 
from a 2-wave at a critical value of the energy which depends on e. The bifurcation 
point is a solution to (3.4)-(3.5). This bifurcated wave, which is a g-like wave, will 
be henceforth referred to as a g-like I1 wave, while the g-like wave which bifurcates 
from the trivial solution will be called g-like I wave. A plot of the critical value of the 
energy versus e is shown in figure 1. The validity of the normal form being restricted 
to small values of the energy, we can expect this bifurcation to occur at least for small 
values of Q. In $4, we confirm numerically that this bifurcation exists for sufficiently 
small values of e. The numerical values for the critical energy have been added in 
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e 

(solid line: analytical results, broken line: numerical results). 
FIGURE 1. Path along which a (1,2)-TW, 2-TW bifurcation occurs at exact resonance 

a, 
FIGURE 2. The four branches of TWs at exact resonance (e = 0.05). 

figure 1 for comparison. This bifurcation, which does not occur in the water-wave 
case, leads to a different behaviour of the solutions to (3.1)-(3.2). Therefore, from 
now on, the analysis will be focused on small values of e. The results presented below 
in this section correspond to e = 0.05. Figure 2 shows a plot of the amplitude a2 
versus the amplitude al with the energy E as parameter along the four branches of 
travelling waves: g-like I, g-like 11, d i k e  and 2-wave. Figure 5(b) shows the three 
branches of (1,2)-waves in addition to the branch of 2-waves in the (o,E)-plane. For 
TWs, o represents the dimensionless phase velocity of the wave. As explained above, 
the branch of g-like I1 waves bifurcates from the branch of 2-waves at a critical value 
of the energy. The other three branches bifurcate from the trivial solution. Note that 
the two branches of g-like waves are very close to each other. 

3.2. Analysis near resonance 
In this subsection, (3.1)-(3.2) are solved for b in a neighbourhood of i. First, the 
value of the energy E is fixed and b is used as parameter. Then the value of b is fixed 
and the energy E is used as parameter. The analysis for a fixed value of the energy 
clearly shows the origin of the third wave mentioned in the previous subsection. In 
figure 3, we have represented the branches of travelling waves in the (b,w)-plane for 
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0.285 r /I 

0.44 0.46 0.48 0.50 0.52 

b 
FIGURE 3. Branches of TWs for an energy E = 0.088 near resonance. The value of e is 0.05. Both 
branches of (1,2)-waves end on the 2-wave branch, but there is a turning point on the branch of 
g-like waves. The coordinates of the bifurcation points (filled circles) are (0.45171,0.27122) and 
(0.48271,0.27675). The coordinates of the turning point are (0.50074,0.27875). 

E = 0.088. As for the water-wave case, the branch of d i k e  waves bifurcates from the 
branch of 2-waves at a value of b smaller than i (see for example figure 2 in Reeder 
& Shinbrot 1981~). The interesting feature of the plot is the behaviour of the branch 
of g-like waves: as opposed to the water-wave case where the branch of g-like waves 
bifurcates from the 2-wave branch at a value of b larger than (see again figure 2 
in Reeder & Shinbrot 1981a), the branch of g-like waves bifurcates at a value of b 
smaller than i. The branch of g-like waves exhibits a turning point of very large 
curvature at a value of b larger than i. The presence of the turning point clearly 
explains the existence of the g-like I1 wave described in § 3.1 : the g-like I1 waves lie 
on the lower part of the g-like branch. The importance of turning points was recently 
emphasized by Aston (1993) in his study of mode interactions for capillary-gravity 
waves. However, he studied rigorously paths of turning points originating from the 
resonance on the trivial solution, while we are concerned here with a path of turning 
points which originates at a non-zero value of the energy. Moreover, our calculations 
are purely formal. The path of turning points with E as parameter can be obtained 
by adding to (3.1)-(3.2) the extra condition that the determinant of the Jacobian of 
these two equations be equal to zero. Figure 4 shows the path of turning points in the 
(b, o)-plane. The path starts at (b, o) = (0.50164,0.27476) for an energy E = 0.008767. 
For 0.50029 < b < 0.50164, there are two turning points. The consequence appears 
clearly in the bifurcation diagrams presented below. Figure 4 also shows the path 
of bifurcation points obtained by solving (3.4)-(3.5) and indicates the type of the 
bifurcated (1,2)-TW (g-like or c-like). There is no bifurcation point for b > 0.50185. 

The bifurcation diagrams of figure 5 show the branches of TWs in the (co,E)-plane. 
The branch of 2-waves always bifurcates from the trivial solution at o2 = e( + 2b). 
For b < i, there is a primary branch of g-like I waves. For b > i, there is a primary 
branch of c-like waves. These waves bifurcate at o2 = e( 1 + b). For b > 0.50029, there 
is a branch of g-like waves which is not (locally) connected to the trivial solution. For 
0.5 < b < 0.50029, there are two secondary branches of g-like waves, which do not 
intersect each other (at least locally). For 0.50029 < b < 0.50164, these two branches 
are globally connected. For b > 0.50164, the globally connected branches disappear. 
This rich structure of bifurcations is hard to visualize on the figures because some of 
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FIGURE 4. Paths of turning points (broken line) and of bifurcation points (solid lines) for the 
(1,2)-TW, 2-TW bifurcation for e = 0.05. The type of the resulting (1,2)-TW is indicated. The 
parameter along the curves is the energy E .  The curves only show points with E < 0.12. The point 
0, of coordinates (0.5,0.27386), corresponds to a zero energy. The path of turning points starts at 
(0.50164,0.27476). The path of bifurcation points turns at (0.50185,0.27453). 

the branches lie on top of each other. That is why we have added figure 6, which 
shows the qualitative behaviour of the branches of g-like waves as b varies. In figure 
6(a) ,  the branches are locally disconnected. In figure 6(b) ,  the branches intersect at one 
point, which is a degenerate turning point. In figure 6(c),  there are two turning points, 
including one on the branch connected to the 2-wave branch. For b > 0.50164, the 
turning point on the lower branch has disappeared (see figure 6 4 .  For b > 0.50185, 
the lower branch has disappeared (see figure 6e). 

4. Numerical results for travelling waves 
Numerical computations, based on the method that was used by Saffman & Yuen 

(1982) for computing finite-amplitude gravity interfacial waves in the presence of a 
current, were performed in order to confirm and extend the analytical results. Only a 
brief description of the scheme is given herein. For more details one can refer to the 
above-mentioned paper or Bontozoglou & Hanratty (1990), who modified the scheme 
to include capillarity. 

For simplicity, the computations are performed in a frame of reference moving 
with the wave so that the flow is steady. For the sake of clarity, different symbols 
are used for the physical coordinates in each fluid: x, y for the lower fluid and x’, y’ 
for the upper fluid. The unit length and unit time are the same as in the analysis. 
Streamfunctions y(x ,  y) and y’(x’, y’) are introduced. Without loss of generality, y 
and y’ are defined such that Y = Y’  = 0, where Y = y(x,  ~ ( x ) )  and Y’  = y(x’, ~(x’ ) ) .  
The physical coordinates below and above the interface are expressed as Fourier 
series (given below in truncated form) in 4, IJI and #, y’ respectively as follows: 

N 
x = - 4 + $ an sin ( n g  ) enWIo , y = + a0 + a, cos ( n g  ) enWIo, (4.1) 

w w 
n=l 

Note that the coefficients a, and a; are different from the coefficients a1 and a2 used 
in the analysis. The total energy 2, the kinetic energy and the potential energy can be 
evaluated in terms of o, e and the coefficients in the Fourier series (see for example 
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Saffman & Yuen 1982), and are non-dimensionalized by an appropriate factor in 
order to allow comparison with the analysis. The fact that the two velocity potentials 
Qi and Qi’ on the interface are not equal is treated numerically by introducing auxiliary 
variables s and t, defined by 

s=&-; ) ,  1 Qi‘ 
(4.3) 

Next, the interface is discretized. Symmetry allows discretization over a half-period 
(from a crest to a trough for example) as follows: 

(4.4) 

Bernoulli’s equation may be written in dimensionless form as 

The constant y ,  which is equal to ern2, is kept in the algorithm as an unknown to be 
used at the end as a check on the accuracy of the results. Equation (4.5) provides a 
set of N + 1 nonlinear equations to be satisfied at each ti (i = 1, ..., N + 1). 

The fact that the curves described by (4.1)-(4.2) coincide at the interface requires 
that x = x’ and y = y ’ ;  that is, using (4.3), 

N N 

n = l  n=l 
N N 

n=l n=l  

Equations (4.6)-(4.7), when satisfied at each ti (i = 1, ..., N + l), provide another set 
of nonlinear equations. Since the auxiliary equations for the crest and trough, 

s(0) = s(n) = 0,  

result in (4.6) being satisfied identically at the endpoints, we obtain 2N equations 
from (4.6)-(4.7). This increases the total number of equations to 3N + 1 in 3N + 3 
unknowns, namely ao, al, ..., u N ,  ao, a,, ..., ah, s2, ..., s N ,  y and w. Specifying the mean 
interfacial elevation (to be zero for example) and either the wave height h defined as 
~ ( 0 )  - y(n) (the drawback of this definition of height is clear since 2-waves then have 
a zero height!) or the total energy 2 provides the last two equations. 

With e, b and h (or 2) as parameters, the resulting system is solved by Newton’s 
method. A sine wave may be used as an initial guess for small wave height h. 

In all the computations presented below, forty mesh points ( N  = 40) were used, 
a number which was found sufficient to ensure accuracy for computing waves with 
small energy. For more details on the accuracy of the scheme, readers may refer to 
Saffman & Yuen (1982) or Bontozoglou & Hanratty (1990). 

In order to compare numerical results to analytical results, the analytical wave 
height must be computed. For TW+s, the elevation of the interface at second order is 

’ I  

= R~ [Ale-i(ot-x) + ~ ~ ~ - i ( 2 w t - 2 x )  + ~ ~ ~ - i ( 3 w t - 3 x )  + ~ ~ ~ - i ( 4 w t - 4 x ) ]  
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FIGURE 5 (a,b). For caption see facing page. 
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FIGURE 5. TW bifurcation diagrams for e = 0.05 for (a) b = 0.495, (b)  b = 0.5 (exact resonance), 
(c )  b = 0.5004, ( d )  b = 0.502. The filled circles indicate bifurcation from a non-trivial solution. 
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FIGURE 6. Qualitative description of the changes in the branches of g-like TWs (solid lines) for 
e = 0.05 as b varies: (a) 0.5 < b < 0.50029, (b)  b = 0.50029 (the cross indicates that the branches 
intersect), (c) 0.50029 < b < 0.50164, ( d )  0.50164 < b < 0.50185, (e) b > 0.50185. The broken line is 
the branch of 2-TWs. The filled circles indicate bifurcation from a non-trivial solution. 
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FIGURE 7. Numerical profiles of the three (1,2)-TWs for h = 0.2, b = 0.5, e = 0.05. The values for 
the energy &' and wave speed o are 0.004667 and 0.275780 for the g-like I1 wave, 0.002247 and 
0.274882 for the g-like I wave, 0.002216 and 0.274169 for the c-like wave. 

In the process of constructing 9, one can find that 

The wave height is then found to be 

h = 2  ( a l + -  + "ala2) , 
1-3b 

with again the convention that a2 takes negative values for c-like waves. 

4.1. Results at exact resonance 

The analysis of the normal form for TWs done in $ 3  suggested that at resonance 
( b  = i) a third wave (of g-like type) exists in addition to the two well-known Wilton's 
ripples and that it bifurcates from a 2-wave at a critical value of the energy. For 
example, for a density parameter e = 0.05, the weakly nonlinear analysis predicted 
that X c  = 0.002934 (see figure 1). By choosing an energy value above the predicted 
one for X c  and using an initial guess based on the weakly nonlinear analysis, we 
indeed obtained a g-like I1 wave (recall the terminology introduced in $ 3  in order 
to distinguish a g-like I1 wave from a g-like I wave, the usual g-like Wilton's ripple). 
In figure 7, we present these two waves along with the c-like wave, for a fixed wave 
height h = 0.20. Figures 8-10 show profiles of each of the three types of waves 
for various wave heights. Figure 8 shows profiles of c-like waves. Comparing with 
results obtained for c-like water waves by Hogan (1981), one can observe that the two 
behaviours are quite similar. For the g-like I type, however, the behaviour is different 
as the wave height increases: the interaction between the fundamental mode and the 
second harmonic weakens and the wave becomes a 1-wave. Recall that we say that a 
(1,2)-wave becomes a 1-wave when the dip in its profile disappears. Figure 9 shows 
profiles of this type. Profiles of g-like I1 waves are shown in figure 10. Note that the 
energy corresponding to the 2-wave is 0.003089, which agrees well with the prediction 
of the analysis (0.002934). 

More information on each type of wave may be obtained by looking at table 1, 
which provides comparisons between numerical and analytical values for the wave 
speed o, the kinetic energy and the potential energy, with waveheight as parameter. 
Figure 11 shows the branches of TWs in the (h, o)-plane. 

11-2 
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FIGURE 9. Numerical profiles of g-like I TWs for b = 0.5, e = 0.05 and h = 0.2,0.5,0.76,1. 

- 0 . 4 1 ,  1 , I , I , I , I , I , I , I , I I I I I I I I I I I I I 1 1  
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 

X 

FIGURE 10. Numerical profiles of g-like I1 TWs for b = 0.5, e = 0.05 and h = 0,0.2,0.5,0.63. 

4.2. Results near resonance 

The next step is to confirm numerically the conjectures of 9 3 near resonance. Again, 
the computations are performed for e = 0.05. As can be seen in figure 1, the critical 
value of the energy for the bifurcation from a 2-wave to a g-like (1,2)-wave to occur 
increases rapidly with e. As a result, even a slight increase in e requires a large 
increase in the steepness of the bifurcating 2-wave. This is demonstrated in table 2 
where the amplitude of the bifurcating 2-wave is tabulated against e. With the present 
numerical scheme, we were not able to detect the bifurcation for values of e larger 
than 0.15 because of the large steepness of the wave. 

In order to study numerically the branching behaviour in a neighbourhood of 
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0.00 
0.10 
0.20 
0.30 
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0.63 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.65 
0.75 
1.00 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.65 

0 (N) 

0.275249 
0.275381 
0.275780 
0.276460 
0.277505 
0.278953 
0.2 8 0 5 9 4 
0.28 1108 

0.273861 
0.274203 
0.274882 
0.275856 
0.276983 
0.278132 
0.279372 
0.280032 
0.281407 
0.284849 

0.273861 
0.273857 
0.274169 
0.274756 
0.275552 
0.276465 
0.277372 
0.277856 

0 (A) 

0.275193 
0.275333 
0.275757 
0.276497 
0.277672 
0.279375 
0.281520 
0.282242 

0.273861 
0.274203 
0.274883 
0.275877 
0.277067 
0.278364 
0.279854 
0.280687 
0.282537 
0.288231 

0.273861 
0.273859 
0.274190 
0.274845 
0.275815 
0.277088 
0.278653 
0.279541 

K (N) K (A) 

0.001 548 0.001470 
0.00 1745 0.00 1674 
0.002342 0.002295 
0.003373 0.003384 
0.00501 1 0.005 133 
0.007417 0.007722 
0.010401 0.011056 
0.011498 0.012192 
g-like I1 wave 

0 0 
0.000281 0.000282 
0.001 126 0.001 128 
0.002489 0.002503 
0.004181 0.004233 
0.005989 0.006160 
0.008018 0.008405 
0.009133 0.009672 
0.011552 0.012517 
0.018606 0.021 550 
g-like I wave 

0 0 
0.000279 0.000279 
0.001109 0.001112 
0.002465 0.002487 
0.004318 0.004392 
0.006617 0.006815 
0.009290 0.009748 
0.010737 0.011401 

c-like wave 

v (N) 

0.001541 
0.001735 
0.002325 
0.003345 
0.004950 
0.007291 
0.01 0 170 
0.011227 

0 
0.00028 1 
0.001121 
0.002472 
0.004139 
0.005903 
0.007871 
0.008944 
0.01 1264 
0.017842 

0 
0.000279 
0.001 107 
0.002457 
0.004290 
0.006552 
0.009173 
0.010590 

v (A) 

0.001464 
0.001666 
0.002280 
0.003353 
0.005066 
0.007574 
0.010758 
0.01 1832 

0 
0.000282 
0.001 124 
0.002486 
0.004186 
0.006064 
0.008229 
0.009441 
0.012135 
0.020449 

0 
0.000280 
0.001 11 1 
0.002476 
0.004356 
0.006727 
0.009563 
0.01 1 146 

TABLE 1. Wave speed, kinetic energy and potential energy as functions of wave height for the three 
types of (1,2)-TWs, at exact resonance and for e = 0.05. Comparison between numerical (N) and 
analytical (A) results. 
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FIGURE 11. Numerical branches of TWs at exact resonance for p = 0.05. 
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e N A 

0.050000 
0.058201 
0.069519 
0.08 108 1 
0.092896 
0.104972 
0.111 111 
0.1173 18 
0.129944 
0.142857 

0.1018 
0.1192 
0.1437 
0.1697 
0.1977 
0.228 1 
0.2445 
0.2621 
0.30 
0.34 

0.0990 
0.1148 
0.1363 
0.1579 
0.1793 
0.2005 
0.21 10 
0.2214 
0.2419 
0.2618 

TABLE 2. Amplitude of the bifurcating 2-wave as a function of e at exact resonance. Comparison 
between analytical (A) and numerical (N) results. 
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FIGURE 12. Numerical branches of TWs for e = 0.05 and an energy 8 = 0.014847 near resonance. 

b = :, we chose X = 0.014847 and studied the variation of the wave speed o with 
b for each branch of TWs. The results are presented in figure 12. Note that the 
curves are not straight lines! The transition from a 1-wave to a (1,2)-wave (the 
g-like I type) occurs at (0.496,0.27867) and the transition to a (1,2)-wave of g-like 
I1 type occurs at the turning point (0.50106,0.27914). The g-like I1 wave becomes a 
2-wave at (0.47999,0.27676). The evolution of the d i k e  branch is quite similar to the 
water-wave case. The 1-wave becomes a (1,2)-wave of d i k e  type at (0.527,0.28003) 
and a 2-wave at (0.437,0.26905). Profiles of the different types of TWs are shown in 
figure 13 for various values of b. 

The conclusion of this section is that the analytical results for travelling waves 
have been confirmed numerically. More numerical work is needed however to follow 
the branches of TWs as their amplitude becomes large. Moreover, as TWs with small 
energy were computed numerically, some bifurcations were detected, which were not 
predicted by the weakly nonlinear analysis. These bifurcations are associated with 
higher-order terms that were neglected in the Fourier series expansions (truncated at 
N = 4 in the present analysis). 
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5. Analysis of the normal form for standing waves 

(2.18), truncated at order three, reduces to two equations 

P. Christodoulides and F. Dias 

Standing waves are characterized by J A I J  = lBll and lA2l = 1B21. The normal form 

(5.1) 

(5.2) 

2 
(0’ - e(l + b)) a1 - 4 1 ~ 2  - 4eal(alia? + ~ 1 1 2 4 )  = 0 ,  

( 2 0 ~  - g( 1 + 4b)) a2 - igw2ai - 4 ~ ~ 2 ( a l 2 ~ :  + ~ 2 2 4 )  = 0. 

Note that again the T sign in front of the quadratic terms in (2.18) has been replaced 
by a minus sign by allowing a2 to take negative values. Following the classification 
for TWs, we will refer to waves with a2 > 0 as g-like waves and waves with a2 < 0 as 
c-like waves. We define the energy of the wave as E = El + 2E2 = 2 4  + 4 4 ,  where 
El and E2 are defined in (2.12). The local behaviour of the solutions is the same 
as for TWs. But again we show that the cubic terms can significantly change the 
branching behaviour. A detailed analysis of the solutions to (5.1)-(5.2) is provided 
below. Solutions for 0,al,a2 are found either by specifying b and e and using E 
as parameter, or by specifying Q and E and using b as parameter. In order to find 
(1,2)-waves, (5.1) can be divided by al. For 2-waves, the system reduces to the single 
equation 

It is easy to see that a bifurcation from a 2-SW to a (1,2)-SW will occur if the system 
2w2 - e( 1 + 4b) - 4@a22U: = 0.  (5.3) 

has a non-trivial solution for given values of b and e. Standing Wilton’s ripples have 
been studied by Vanden-Broeck (1984) analytically and numerically in the case of 
water waves (e  = 1). 

5.1. Analysis at resonance 
In this subsection, b is equal to i. If cubic terms are neglected in the system of 
equations (5.1)-(5.2)7 there are two (1,2)-SWs for given values of e and E ,  a g-like 
wave and a c-like wave. However, if cubic terms are added, only one (1,2)-SWmight 
be present for particular values of the energy (always in addition, of course, to the 
2-wave solution corresponding to al = 0). What happens is that the c-like wave 
becomes a 2-wave. The bifurcation point is a solution to (5.4)-(5.5). The critical 
energy E,(g) at the bifurcation point is shown in figure 14. Bearing in mind that 
the system (5.1)-(5.2) is valid only for small-energy waves, we can predict that this 
bifurcation phenomenon is likely to occur for small values of e. Again, we take 
g = 0.05 in the analysis below. Figure 15 shows a plot of the amplitude a2 versus the 
amplitude a1 with the energy as parameter for the three branches of SWs. It is clearly 
demonstrated that the branch of c-like waves ends on the branch of 2-waves. 

5.2. Analysis near resonance 
In this subsection, (5.1)-(5.2) are solved for b in a neighbourhood of i. First the value 
of the energy is fixed and b is used as parameter. The resulting branches of standing 
waves are shown in figure 16. Since the chosen value for E is above the critical value 
at exact resonance, the branch of c-like SWs ends on the right of b = i. Figure 17 
shows the path of bifurcation points obtained by solving (5.4)-(5.5) with the energy 
as parameter and indicates the type of the bifurcated (1,2)-SW(g-Eike or c-Eike). There 
is no bifurcation point for b less than 0.49953. No turning points have been found for 
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e 
FIGURE 14. Path along which a (1,2)-SW, 2-S W bifurcation occurs at exact resonance. 
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a1 

FIGURE 15. The three branches of SWs at exact resonance (e  = 0.05). 

the branches of (1,2)-SWs. Bifurcation diagrams are shown in figure 18. The branch 
of 2-waves always bifurcates from the trivial solution at co2 = e( + 2b). For b < i, 
there is a primary branch of g-like waves. For b > i, there is a primary branch of 
c-like waves. These waves bifurcate at co2 = e(l + b). For b < 0.49953, there is no 
branch of c-like waves. For 0.49953 < b < 0.5, there is a secondary branch of c-like 
waves which is globally connected to the branch of 2-waves. Note that it almost lies 
on top of the branch of 2-waves and is therefore hard to see in figure 18(b). For 
b > i, there is a secondary branch of g-like waves, which bifurcates from the branch 
of 2-waves. 

The structure of all the branches of SWs described above has not been checked 
numerically yet. The numerical computation of SWs with surface tension is quite 
difficult and is still an area of active research. It would be of interest of course to 
confirm numerically the analytical results obtained in this section and to extend them 
to finite-amplitude waves. 

6. Analysis of the normal form for mixed waves 
These periodic waves, which are neither TWs nor SWs, are three-mode waves 

characterized by either Al = 0 ( M W f )  or B1 = 0 (MW-).  Since the analysis is similar 
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b 

FIGURE 16. Branches of SWs for an energy E = 0.004 near resonance. The value of e is 0.05. Both 
branches of (1,2)-waves end on the 2-wave branch, but the branch of c-like waves ends for a value 
of b larger than 0.5. The coordinates of the bifurcation points (filled circles) are (0.50063,0.27329) 
and (0.50539,0.27415). 
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FIGURE 17. Paths of bifurcation points for the (1,2)-SW, 2-S W bifurcation for e = 0.05. The type of 
the resulting (1,2)-SW is indicated. The parameter along the curves is the energy E .  The point 0, of 
coordinates (0.5,0.27386), corresponds to a zero energy. The curves only show points with E < 0.02. 
The path of bifurcation points turns at (0.49953,0.27367). 

for both types, we concentrate on the case B1 = 0 (and simply denote the mixed 
waves by MW). The normal form (2.18), truncated at order three, reduces to three 
equations since the second one is identically zero: 

O2 - e(1 + b) - eo2a2 - 2e "all + plda: + a12& - P12M21 = 0,  (6.1) 

( 2 ~ '  - @ ( I +  4b)) a2 - iea2a: - 2 ~ ~ 2  [(xi, + p12)a: + a22E2 - p22M2] = 0,  (6.2) 

2a2  - e( 1 + 4b) - 2~ [(a12 - piz)~: + ~ 2 2 ~ 5 2  + p22M23 = 0 .  (6.3) 

The third equation has been divided by b2, which is assumed to be non-zero. Again, 
allowing a2 to take negative values has led to replacing the f sign in front of the 
quadratic terms by a minus sign. Following the classification for TWs and SWs, 
waves with a2 > 0 are called g-like M W s  and waves with a2 < 0 are called d i k e  
MWs. Again the energy of the wave is E = El + 2E2 = us + 2(a; + b;) ,  where El 
and E2 are defined in (2.12). Solutions to (6.1)-(6.3) for a ,a l ,az  are found either by 
specifying b and e and using E as parameter, or by specifying e and E and using b 
as parameter. Several bifurcations can occur. The conditions for each one to occur 
are given below. 
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( a )  Bifurcation (1,2)-TW; M W  

This bifurcation occurs when the amplitude b2 becomes zero. This is the case when 

(6.4) 

(6.5) 

(6.6) 

w2 - @ ( I +  b) - @w2a2 - 2~ [(all + Pii)al + (a12 + PI,)~;] = 0, 

(2w2 - @ ( I +  4b)) a2 - iew2af - 2 ~ ~ 2  [(a12 + p12)a: + (a22 + P22)a;] = 0, 

2w2 - @(I + 4b) - 2@ [(a12 - P 1 2 ) 4  + (a22 - p22)a;l = 0 

has a non-trivial solution for given values of b and e. Note that this is a bifurcation 
from a (1,2)-TW+ to a MW-. 

(b )  Bifurcation 2-SW M W  

This bifurcation occurs when the amplitude a1 becomes zero, with a2b2 # 0. It 
follows that a2 = b2, unless the degeneracy condition f122 = 0 is satisfied, which is 
never the case near or at resonance. As a result, an M W  becomes a 2-SW if 

has a non-trivial solution for given values of b and e. Note that the conditions 
(6.7)-(6.8) are exactly the same as the conditions (5.4)-(5.5) for the bifurcation from a 
2-SW to a (1,2)-SW to occur! Therefore a multiple bifurcation occurs at such points. 

(c )  Bifurcation 2-TW; M W  

This bifurcation occurs when the amplitudes al and a2 or a1 and b2 become zero 
simultaneously. The case (al, b2) = (0,O) is not possible because equations (6.2)-(6.3) 
lead to = 0, which implies that a2 = 0 too. The case (al, a2) = (0,O) is possible 
and corresponds to the bifurcation from a 2-TW- to an MW-. It occurs if 

w2 - @(I + b)  - 2e(a12 - p12)b; = 0, (6.9) 
2w2 - @( 1 + 4b) - 2g(a22 + = 0 (6.10) 

has a non-trivial solution for given values of b and e. 

6.1. Analysis at resonance 
In this subsection, b is equal to i. Results for e = 0.05 and for e = 1 (water waves) 
are presented below. Figure 19 shows plots of the three amplitudes al, 122, b2 as the 
energy varies, for @ = 0.05. The bifurcation points clearly appear on the plots. There 
is a primary branch of g-like MWs which bifurcates from the trivial solution. There is 
a branch of c-like MWs,  not connected to the trivial solution, which bifurcates at one 
end from the branch of 2-SWs and at the other end from the branch of (1,2)-TWs. 
The same branches are shown in the (w,E)-plane in figure 20(a): c-like M W s  exist 
only for values of the energy between 0.00007 and 0.00250. Figure 20(b) shows the 
branches of mixed water waves: the bifurcation 2-SW, M W  does not occur, at least 
for small values of the energy. 

6.2. Analysis near resonance 
In this subsection, equations (6.1)-(6.3) are solved for e = 0.05 and for b in a 
neighbourhood of i. First, we look for possible bifurcations by solving the three 
systems (6.4)-(6.6), (6.7)-(6.8) and (6.9)-(6.10). The system (6.7)-(6.8) has been solved 
in 5 5 and the path of bifurcation points is shown in figure 17. The bifurcation from a 
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w 

FIGURE 18 (a, 6). For caption see facing page. 
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FIGURE 18. SW bifurcation diagrams for e = 0.05 for (a) b = 0.499, (b)  b = 0.4997, (c) b = 0.5 
(exact resonance), ( d )  b = 0.501. The filled circles indicate bifurcation from a non-trivial solution. 
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FIGURE 19. Branches of mixed waves ( M W s )  at exact resonance for e = 0.05: (a) amplitude a2 
versus amplitude a1 for the two branches of MWs, ( b )  amplitude a1 versus amplitude b2 for the 
same branches. The branch of c-like MWs bifurcates at one end from the branch of (1,2)-TWs and 
at the other end from the branch of 2-SWs. 
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FIGURE 20. MW bifurcation diagrams at exact resonance for (a) e = 0.05, ( b )  e = 1 
The filled circles represent bifurcation points. The branches of waves from which 
c-like M Ws bifurcates are also shown. 

(water waves). 
the branch of 
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FIGURE 21. Paths of bifurcations points for the MW, 2-TW and MW, (1,2)-TW bifurcations for 
Q = 0.05. The path on the left of b = 0.5 corresponds to the bifurcation from a 2-TW to a M W  of 
g-like type; the path on the right of b = 0.5 corresponds to the bifurcation from a (1,2)-TW to a 
M W  of c-like type. The parameter along the path is the energy. The point 0 corresponds to a zero 
energy. 
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FIGURE 22. Branches of MWs for an energy E = 0.002 near resonance. The value of Q is 0.05. Both 
branches of MWs exist only on a finite interval. From left to right, the coordinates of the bifurcation 
points (filled circles) are (0.49329,0.27277), (0.49982, 0.27349), (0.50318,0.27410), (0.50609,0.27448). 

2-TW to a g-like M W  occurs for values of b smaller than i and is shown in figure 21. 
The bifurcation from a (1,2)-TW to a c-like M W  also occurs. The corresponding path 
of bifurcation points, which is shown in figure 21, has a turning point at b = 0.49991 
(which is of course not visible on the plot but explains the bifurcation point at 
E = 0.00007 in figure 20a). Next, the value of the energy is fixed and the branches of 
M W  are studied as b varies in a neighbourhood of i. The results are shown in figure 
22. The branch of g-like MWs bifurcates at one end from the branch of 2-TWs and at 
the other end from the branch of 2-SWs. The branch of d i k e  M W s  bifurcates at one 
end from the branch of 2-SWs and at the other end from the branch of (1,2)-TWs. 

6.3. Discussion on mixed waves 
So far, three-mode mixed waves have been studied only theoretically. Bridges (1990) 
showed that such waves are generic in the presence of a two-mode interaction and that 
they persist at any order of the normal-form truncation. A proof of existence of such 
waves for the full problem remains an open problem (like the proof of existence of 
standing waves for that matter!). Numerical solutions for such waves would be a first 
step towards a better description of their nature. What the weakly nonlinear analysis 
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suggests is that three-mode mixed waves arise from the superposition of a (1,2)-TW+ 
and of a 2-TW- (or vice versa). One may alternatively view such waves as travelling 
waves in which the fundamental excites not only the second harmonic in the same 
direction (as in the classical 1:2 resonance for TWs) but also the second harmonic in 
the opposite direction. Mixed waves can also be found in the no-resonance case but 
they are degenerate. It should be pointed out that Rayleigh (1915), by investigating 
whether periodic motions in the form of ‘approximate’ TWs or SWs at leading order, 

y(x, t )  = A(t )  cos x + B(t)  sin x , with A f B ,  A B f O ,  (6.11) 

could be solutions to the water-wave problem was in fact looking for two-mode mixed 
waves. For gravity waves, Rayleigh concluded negatively. For capillary-gravity waves 
however, Dias & Bridges (1994) show that, when a certain degeneracy condition is 
satisfied (see 2.19), waves of the form (6.11) are possible. These waves can be viewed 
as partially reflected waves and should not be confused with three-mode mixed waves. 

7. Time-modulated waves 
In the previous sections, only space- and time-periodic motions have been consid- 

ered. The natural question to ask is whether these waves are stable. A well-known 
method to study stability is the method of multiple scales. Modulational stability will 
be discussed in the next section. Here, we only consider the slow time-modulation 
of the waves. Therefore, the motions are still periodic in space but the amplitudes 
of the fundamental mode and of the second harmonic are allowed to vary slowly in 
time. From (A7), one can see how time periodicity has been built into the coefficients. 
We now assume that the coefficients pi,qi,ri,si also depend on time but that this time 
dependence is slow so that it does not affect the averaging process. As a result (see 
Dias & Bridges 1994 for a justification), the normal form becomes 

1 

1 

(a2 - @ ( I +  b)) A1 - @u2AIA2 - 2~A1 (allE1- PliMi + ~12E2 - p12M2) = -Ai, 
(m2 - @ ( I +  b))  B1 - eu2B1B2 - 2gB1 (allE1 + ,!$lMl + a12E2 + p12M2) = -i&, 
(202 - @(l + 4)) A2 - i@co2A: - 2~A2 (al2El - &M1 + a22E2 - p22M2) = - i j 2 ,  

(202 - e(1 + 4b)) B2 - ieo2B: - 2eB2 (a12E1 + P12M1 + a22E2 + P22M2) = 4% 

(7.1) 
where the dots mean derivative with respect to t. 

The geometrical method used below to study solutions to (7.1) has been applied 
only recently to dynamical systems. One of the key properties of the system (7.1) is 
that it has two invariants: IA1I2 + 21A2I2 and IB1I2 + 21B2I2, or equivalently El + 2E2 
and MI + 2M2. Since the method works similarly for TWs and SWs, we describe 
it for TWs with B1 = B2 = 0. First (7.1) is rewritten in terms of the real variables 
El, E2, S, which were already used in the study of periodic solutions in 6 2, and of an 
additional variable 3 = i A:& - Z 2 A 2 )  : ( 

El = @ W 2 3  

g2=--.I u) 2 3  2 @ $ = @ [(2b - 1) + 2(~12 + P i 2  - 2aii - 2Pii)Ei + 2(a22 + 8 2 2  - 2~12 - 2/j12)E21 
3 = -@S [(2b - 1) + 2(a12 + P12 - 2aii - 2811)Ei + 2(a22 + p22  - 2~12 - 2/312)&] 

+@W2E1(4E2 - El).  

(7.2) 
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In addition to the relation El + 2E2 = E (constant), there is another obvious 

S2 + g 2  = 4E;E2 or S2 + i2 = 2E;(E - El).  (7.3) 

In the (S, El, $)-plane, (7.3) represents a surface of revolution around the E1-axis, 
which looks like the surface of a pear. The equation for 3 in (7.2) can be integrated 
to give 

a’s = (2b - 1)Ei + [(mi2 + P i 2  - 2~11 - ~ P I I ) E :  - 2(a22 + P 2 2  - 2a12 - 2P12)~522] + w ,  
(7.4) 

where %? is a constant. In the (S, El, $)-plane, (7.4) represents a surface parallel to the 
$-axis. The motions lie on the intersection between the surface of revolution (7.3) 
and the surface (7.4). A description of all possible motions is beyond the scope of 
this paper and will appear elsewhere (Chossat & Dias 1993). 

In this section, we consider what happens when the system is truncated at order 
two. The surface (7.4) then takes the simple form 

0 2 S  = (2b - 1)El + %. (7.5) 

In the (S,El,$)-plane, the motions are given by the intersection of planes parallel to 
the $-axis with the surface of the pear. The initial conditions determine the constants 
E and %?. When Ib - is sufficiently small, there are three possible types of motion, 
which correspond to motions studied by McGoldrick (1970b) at exact resonance and 
by Miles (1976) in a different context: ( a )  the plane is tangent to the pear and 
consequently the intersection reduces to a point, (b)  the plane cuts the pear without 
going through the origin and the resulting intersection is a periodic orbit, (c) the plane 
cuts the pear by going through the origin (‘8 = 0) and the resulting intersection is a 
homoclinic orbit. Case ( a )  corresponds to the time-periodic motions studied in $3. 
There are two planes tangent to the pear, leading to g-like (S > 0)  and c-like (S < 0)  
Wilton’s ripples. Case (b)  corresponds to motions with a slow periodic exchange of 
energy between the fundamental mode and the second harmonic. Case (c) is the 
limit of case (b )  as the period of exchange of energy becomes infinite. Initially the 
total energy appears in the fundamental and is ultimately transferred entirely to the 
second mode. Miles (1976) showed that the equations can be integrated exactly in 
terms of elliptic functions. If Ib - ;I becomes larger, one of the two periodic motions 
corresponding to case (a) can no longer exist because one of the tangency conditions 
is no longer satisfied. What happens has been described earlier at the end of $2: one 
of the (1,2)-waves becomes a 2-wave. In the (S,El,$)-plane, 2-waves all lie at the 
origin. The other consequence is that the homoclinic orbit can no longer exist. This 
phenomenon (in a different context) is well illustrated in figure 3 in Miles (1976). 

The results for S W s  are similar to those for TWs at second order. A rigorous 
mathematical analysis of the system (7. l), which includes the effects of higher-order 
terms, can be found in Chossat & Dias (1993). 

8. Discussion 
This section provides a discussion on the stability of the travelling waves studied 

in $3. In addition, comments are made on the feasibility of experiments to observe 
such waves. In particular, the effects of viscosity will be briefly discussed. 

The modulational stability of a train of weakly nonlinear capillary-gravity water 
waves has been studied extensively (see for example Hammack & Henderson 1993 
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for a review of contributions to this field). In infinite depth, the main result at third 
order is that there is a region of stability for values of b between (2/J?;- 1) and t, or 
for frequencies between 6.4 and 9.8 Hz. When b = (2/$ - l) ,  the second derivative 
of the frequency oo with respect to k is zero. An internal resonance between the 
fundamental mode and the Nth harmonic occurs when b = 1/N. Therefore, the 
region of stability includes values of b corresponding to the family of Wilton’s ripples 
down to the 1:6 resonance. The stability results can be obtained by using the method 
of multiple scales in space and time or the Zakharov equation. Let the free-surface 
elevation at time t = 0 be represented by q(x, t = 0) = &A(&x)e’”. At third order, the 
equation governing the modulations of A is a nonlinear Schrodinger equation of the 
form 

MI2 9 

gk3(8 + b + 2b2) 
2iooA, + oow:Arr = 

2( 1 - 2b) 
where z = c2t, 5 = E(X - oht) (see for example Kawahara 1975 or Djordjevic & 
Redekopp 1977 for details). A similar equation was also derived by Nayfeh & Saric 
(1972) for a more general problem (in infinite depth): the space and time modulations 
of capillary-gravity waves travelling at the interface between two fluids with different 
densities and in relative motion. Computing the coefficients in their equation (3.39) 
when there is no relative motion yields 

~ 1 ~ 1 ~ .  (8.2) 
egk3 [4e2( 1 + b)2 + (1 - 2b)(4 + b)] 

2( 1 - 2b) 
2iooA, + woo;lAcr = 

The previous equation can be referred to as the nonlinear Schrodinger equation 
governing the modulations of capillary-gravity waves at the interface between two 
fluids of infinite extent. As far as we know, the results on stability that can be 
obtained from (8.2) have not appeared elsewhere. The criterion for instability is that 
the product of the coefficient of the cubic term times the coefficient of Art is negative. 
Figure 23 shows the stability diagram for capillary-gravity interfacial waves. The 
interesting feature is the curve on the right-hand side, which was first obtained by 
Dias & Bridges (1994). Along that curve, the coefficient of the cubic term changes 
sign, and for values of e less than 5 ,  one sees that there is a second region of stability 
in addition to the unique region of stability for water waves. The derivation of (8.2) 
as well as (8.1) breaks down near the 1:2 resonance. However, one sees that for small 
values of e, the region of instability is very small in a neighbourhood of b = t. In 
order to study the stability in that neighbourhood one needs a different scaling of the 
amplitudes. Jones (1992) studied the stability of Wilton’s ripples in the case of water 
waves and obtained a system of two coupled nonlinear partial differential equations 
governing the modulations of the amplitudes of the fundamental and of its second 
harmonic. Jones found that Wilton’s ripples are always unstable to perturbations in 
the same direction as the ripple. Note however that his analysis is restricted to exact 
resonance and does not allow for a detuning. Nayfeh & Saric (1972) also considered 
the second-harmonic resonance for Kelvin-Helmholtz waves. But their equations, 
which are first order in time and in space, are essentially the same as McGoldrick’s 
(1970b). A stability analysis in the spirit of Jones’ analysis can certainly be extended 
to interfacial waves and be modified to include near-resonant waves, but it is beyond 
the scope of our paper. However, in view of the stabilizing role played by the density 
ratio as it approaches unity for capillary-gravity waves away from resonance, one 
might anticipate a stabilizing role for Wilton’s ripples too. 

Wilton’s ripples have also been studied experimentally in the case of water waves. 
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McGoldrick (19704 generated Wilton’s ripples but used tap water and discovered 
that a surface film was present (see the discussion below on the effects of viscosity 
and surfactants). His waves were rapidly attenuated and did not even reach the end 
of the basin. Researchers who have performed experiments on Wilton’s ripples have 
noticed that they can be excited even if the wave steepness is quite small and if there 
is important detuning. Hammack & Henderson (1993) report that internal resonances 
occur in the whole region of modulational stability, which was described above and 
corresponds to frequencies in the range [6.4,9.8] Hz. Moreover, the timescales on 
which they evolve are different from the predictions of resonant interaction theory. 
Therefore, one must be cautious when using analytical results on stability in the 
internal resonance region. Perlin & Ting (1992) also performed experiments in the 
same frequency range, with an emphasis on steep waves. It is interesting to note 
that only g-like waves seem to be observed in experiments, perhaps because of the 
modulational instability present in the region b > 

As far as we are aware, no stability analysis for capillary-gravity standing waves 
and no experiments on standing Wilton’s ripples have been performed. 

Experiments on capillary-gravity interfacial waves have been done, in particular 
when there is a relative motion between the two fluids. Thorpe (1969) and Pouliquen 
et al. (1992) have performed the Reynolds experiment which consists of tilting a 
tube filled with two immiscible fluids, thus creating a shear flow. Of course the 
purpose of the experiment is not directly related to the present study, but an inviscid 
theory seems to be appropriate to describe the waves they observe. Moreover, for the 
fluids used in their experiments, the wavelength corresponding to the 1:2 resonance 
is between 2.6 and 9 cm, with corresponding frequency between 1 and 2.8 Hz. These 
are ‘realistic’ wavelengths and frequencies. Again in the context of Kelvin-Helmholtz 
waves, Bontozoglou & Hanratty (1990) have shown that the 1 :2 resonance can explain 
some of the observed phenomena in gas-liquid flows. 

In experiments, viscosity and surfactants can play an important role. Viscous 
dissipation can be incorporated in the equations for the wave propagation. Miles 
(1988) and Joo, Messiter & Schultz (1991), following Lamb’s analysis (see Lamb 
1932, Art. 348), show that viscous dissipation appears at third order and leads to a 
modified version of (8.1): 

(c-like waves). 

AIAI2, 
O 55 = 2(1-2b) 

g k 3 ( 8  + b + 2b2) 
2 i w o ~ ,  + 2iwi01~ + W~CO”A 



Resonant capillary-gravity interfacial waves 337 

where 

and v denotes the kinematic viscosity. McGoldrick (1970a) also includes viscous 
damping in his second-order equations. But the damping coefficient D = is of 
order E~ and therefore is consistent with (8.3). Joo et al. treat the effect of surfactants 
but use a different scaling between the wave amplitude and the boundary-layer 
thickness so that the dissipation due to surfactants also appears at third order and 
they conclude that surfactants have no effects on Wilton’s ripples. But in fact the 
damping coefficient is much stronger for surfactants (for water, the damping factor 
due to viscosity is equal to 0.0021 while the damping factor due to surfactants is 0.01 1) 
and that explains why McGoldrick observed such a rapid attenuation of his waves. 
Extending Lamb‘s analysis to interfacial waves, one can expect a similar behaviour 
with v in (8.4) replaced by ( p  + p’ ) / (p  + p’), where p and p’ are the viscosities of the 
fluids. 

The discussion above indicates that experiments may be performed successfully 
to study resonant interfacial capillary-gravity waves. In addition to the difficulties 
associated with experimental capillary-gravity water waves (accurate measure of the 
surface tension coefficient, dissipation due to viscosity and contamination of the free 
surface), there is, for interfacial waves, the difficulty of finding immiscible fluids. 
However, preliminary results on stability indicate a stabilizing effect of the density 
ratio as it approaches unity. 

Appendix A. Derivation of the functional 2 
With the restriction to space-periodic functions, the canonical variables y(x, t )  and 

[(x, t )  can be formally identified with Fourier series expansions in space. Taking zero 
as average wave elevation, l / k  as unit length and (gk); as unit frequency, a wave 
with wavenumber k is represented by the Fourier series expansions 

n=l 
a3 

[(x, t )  = i o ( t )  + C (c,(t) cos nx + ~ , ( t )  sin nx) , (A 2) 
n= 1 

where C has been non-dimensionalized by being divided by ( p  + p’)(gk);/k2. 
Restricting the Fourier series to a finite number of terms N, Dias & Bridges (1994) 

have shown that the kinetic energy defined in (2.6) can be represented in a convenient 
matrix form 

K(i ,  V )  = K({C}, { q } )  = (p  271.k3 + p ’ ) 2 g { [ } T [ P ] - ’ { [ } ,  (A 3) 

where { q }  and {C} are 2N-dimensional, time-dependent vectors of Fourier coefficients 
and the 2N x 2N matrix [PI depends only on p, p’ and the Fourier coefficients of 
q(x, t). Eliminating the vector {[I by using (2.9) yields 

Therefore the Lagrangian K - V can be expressed purely in terms of the Fourier 
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(A 5 )  
ng K - = @{%}TIP1{Vd - v -  

Away from resonance, it is sufficient to take N = 2 in order to study space- 
and time-periodic waves with small energy (Dias & Bridges 1994). However, in the 
presence of resonance, at least N = 4 terms need to be retained. Using the Fourier 
series expansions for rl given in (Al) with N = 4, one finds that the matrix [PI is 
equal to 

where 

1 f A2 + ;(A: - Bf) + ;(A; + B;) *A3 + i(A1A2 - B1B2) fA4 + ;(A: - B;) 
*A3 + @lAZ - BIB2) 1 2 -  + A4 + ;(A; - B;) 

fA4 + ;(A; - B;) 

fB2 + iAIB1 
+B3 + i(AIB2 + BIA2) 

1 TA2 - ;(A: - Bf) + ;(A; + B;) TA3 - i(AIA2 - B1B2) TA4 - ;(A; - B:) 
3 + A4 - $4; - B;) 

TA4 - ;(A: - B;) 

0 

0 '  
O 1  1 

f B 4  + 0 A2B2 0 0 i ] .  

: I  1 

[ 
[ 0 0 6 4 

0 
1 0 

0 0 6 5 

f B 3  + &41B2 + B1A2) fB4 + $2B2 

[PF] = 

* - 
IPz1 - fB4 + 

0 0 0 0 

0 

0 .  
0 1 -  f A 3  - - BlB2) 
1 0 [P:l = 

Once [PI has been obtained, (A5) yields the Lagrangian, correct up to fourth order: 

K - v = ;n(p + p')gK3 [A? + B: + $4; + ;B; + AlBlA1B1+ ;(A; - B?)(A? - Bf) 
+ @(A& -A& + 2B2A1B1) + $4: + B?)(A2, + B;) 

+ ( A d *  - BlB2)(AlA2 - BlB2) + (AlB2 + A2Bl)(AlB2 + A2B1) 
+ 2A2&42B* + ;(A; - B;)(A; - B;) + ;(A; + B,2) + :(A; + B,2) 
+ 2 ~ ( A l A 2 ~ 3  - B1B2A3 + A 1 B 2 ~ 3  + A 2 B 1 ~ 3  + ; A 3 4  - iB$44 + A2B2~4)]  
- $ ( p  - p')gk-3 [(l + b)(A:. + B:) + (1 + 4b)(A; + B;) 

- 3b(A2 16 1 + B2 1) 2 - 3b(A2, + B;)2 - 3 4 4  + B?)(A2, + B;)] . 
+( 1 + 9b)(A: + B i )  + (1 + 16b)(A: + B j )  

(A 6) 

The problem has been reduced to a finite-dimensional Hamiltonian system with eight 
degrees of freedom. Next, we expand the eight Fourier coefficients A,, B, (n = 1,2,3,4) 
in Fourier series in time. The simplest Fourier expansions that result in a complete 
local theory are 

p1 cos w t  + 91 sin wt + t: cos 3wt + ui  sin 3cot, 
rl cos cot + s1 sin wt + v: cos 3wt + w: sin 3wt, 
p2 cos 2wt + 92 sin 2cot + x2, 
r2 cos 20t  + s2 sin 2wt + y2, 
t3 cos 3cot + u3 sin 3wt + t! cos cot + u: sin at, 
213 cos 3cot + w3 sin 3wt + v! cos cot + wi sin wt, 
t4 cos 4wt + u4 sin 4wt + x4, 
u4 cos 4cot + w4 sin 4wt + y4, 
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where co is the dimensionless frequency of the wave. Substituting (A7) into (A6), 
integrating over time and dividing by (2.10) results in the functional 

2 = (a2 - e(l + b) )  El + ( 2 0 ~  - e(l + 4b)) E2 + $m2 (E:  - 3M:) + m2 ( E i  - 3M;) 

+ieb(&E:- &M:+3E;-Mi+2E1E2) - ~QW2S+f(t,U,v,w,X,y), (A8) 

where f is a lengthy function of the coefficients t, u, u,  w, x, y and 

E 1 -I( - 2 P, 2 + 4; + r? + Sf) 

M ,  = qzr1 - PlS l  

s = ip2(p: - 4: - r: + s:) + q2(plq1- r1s1) + r2(p1~1- q1sd + s2(p1s1+ q1ri). 

The above expression for the reduced functional is a generalization of the expression 
that Dias & Bridges (1994) obtained for the study of space- and time-periodic 
interfacial waves without resonance. If one sets all the coefficients t, u, v, w and x4, y4 

to zero in (A8), 2 reduces to the expression in Dias & Bridges. In the no-resonance 
case, the coefficients of A2 and B2 are then eliminated in terms of the coefficients of 
Al  and B1. In the case of the 1 :2 resonance, however, the coefficients to be eliminated 
are the coefficients of A3, &,A4 and B4 (and also the ‘constant’ coefficients in A2 and 
B2). Therefore, the next step is to eliminate the coefficients t, u, u,  w, x, y in terms of the 
coefficients p ,  q, r ,  s. Because of the symmetries of the problem, the coefficients p ,  q, r ,  s 
appear only in the combinations El,E2,M1, M2,S  (see Bridges 1990 for a proof). We 
find that the reduced functional 2 ( E l ,  M1, E2,  M2,  S, co; b, e )  takes the form 

(i = 1,2), 
(i = 1,2), 

9 = (m2 - e(l + b)) El + ( 2 0 ~  - e(l + 4b)) E2 - ieo2S 

-e [RllE? + PllM: + a22E22 + P22M22 + 2a12E1E2 + 2P12MIM21 , (A9) 

where the full expressions for the coefficients a,, and Pz,, which depend only on b, e 
and co2, can be found in appendix B. 

In order to see the connection with travelling and standing waves, we consider the 
order-one expansion of q (see (Al) with N = 2): 

q =A1(t)cosx+Bl(t)sinx+A2(t)cos2x+B2(t)sin2x. 

If we expand the coefficients Al,Bl,A2,B2 in time t (see (A7)) and retain only the 
first-order terms, we obtain 

q = (p1 cos cot + q1 sin cot) cos x + (rl cos cot + s1 sin cot) sin x 
+(p2 cos 2cot + q 2  sin 2wt) cos 2x + (r2 cos 2cot + s2 sin 2cot) sin 2x, 

or 

, (A 10) = R~ [AIe-i(wt-x) + Ble-i(wt+x) + A2e-i(2wt-2x) + $e-i(2wt+2x)] 

where 

(i = 1,2). I ai = ‘(pi + si) + ‘i(qi - T i )  T 1 Bi = ?(pi - si) + ,i(qi + Ti) 
It is clear from (A10) that if B”1 = & = 0, resp. A”1 = 2 2  = 0, the solution is an 

interfacial TW travelling to the right, resp. left. If IA1I = I &  and la21 = & I ,  the 
solution is an interfacial SW. The corresponding quantities El, MI, Ez, M2 and S are 
given in (2.12)-(2.14). Note that in the main text, we have omitted the tilde. 
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Appendix B. Coefficients in the normal form 

sion of the reduced functional 2 (2.11)’ are 

9b w2 w4 

P. Christodoulides and F. Dias 

The general expressions for the coefficients aij and Pij ,  which appear in the expres- 

mil= -- - - - 32 8~ 4(1 + 4b) ’ 
3b 3w2 w4 

’11 = E + 8 e i 4 ( 1 + 4 b ) ’  
3b w2 em4 3Qco4 9QW4 

3Qw4 
QW4 - 

9b o2 4w4 2Q04 

3b 3w2 4w4 2Qw4 

El2 = -- - - + 
2 

P12 = - + 

a22 =-- - - - ~ + 
P22 = - + - + ~ + 

4~ 3w2 - (1 + 9 b ) ~  w2 - 3( 1 + 9 b ) ~  + 36w2 - 4( 1 + b ) ~  ’ 
9Q04 - w2 

Q 3 ~ 0 ~  - (1 + 9 b ) ~  w2 - 3( 1 + 9 b ) ~  3 6 0 ~  - 4( 1 + b)e ’ 

2 Q 1+16b  4w2- (1+  1 6 b ) ~ ’  

2 Q 1 + 1 6 b  4w2-(1+16b)e‘  

Since the coefficients aij  and Pij only appear in the cubic terms in the normal 
form, the frequency cu can be replaced by the linear frequency wo. For 1-waves or 
combination waves, the linear frequency is given by 00” = ~ ( l  + b). For 2-waves, it 
is given by coo’ = i@( 1 + 4b). The simplified expressions for the coefficients are given 
below. 

B.l. Simplijied expression for 1-waves and (1,2)-waves 

4 +  13b (1 +b)2  

(1 + b)2 

‘11 = - T - 4 ( 1 + 4 b ) e 2 ’  

3(4 + 5b) 
P11 = 32 + 4(1 +4b)@” 

a12 = -~ - 
1 + 7b 

4 
(1 + b)(23 - 410b - b2) 

32( 1 - 3b)( 1 + 13b) Q2 > 

(1 + b)(55 + 38b + 415b2) 
P i 2  = 1 + b + 

32(1- 3b)(l + 13b) Q2 , 

2 + l l b  l O ( 1  + b)2(1 - 8b) 
Ez2 = -~ - 

2 3(1 -4b)(l + 16b)e2’ 

+ 3(1 - 4b)(l + 16b) 
3(2 + 3b) 2(1 + b)2(7 - 8b) 

Q2 .  2 P22 = 

Note that the denominators of the coefficients a12 and ’12 vanish when b = f :  this 
phenomenon is associated with the resonance between the fundamental mode and 
the third harmonic. The ordering of the Fourier coefficients used here is no longer 
valid. Similarly, the denominators of the coefficients c122 and P22 vanish when b = i, 
i.e. when the fundamental mode and the fourth harmonic resonate. 

B.2. Simplijied expression for  2-waves 

1 + 13b 
2 

(1 - 32b)( 1 + 4b)2 
2(1 - 8b)(l + 16b)@” 

a22 = -___ - 
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3( 1 + 5b) 
2 

3( 1 + 4b)2 
e2.  

+ 2( 1 - 8b)( 1 + 16b) P22 = 

Note that the other coefficients are not needed. 

Appendix C. Coefficients for the total energy 

expression of the total energy Z (2.17), are 
The general expressions for the coefficients a: and P:, which appear in the 

27b w2 w4 

32 8~ 4(1 +4b) ’ +- a; = -_ - - 

9b 3w2 w4 
11 - - + - -~ 

p H  - 32 8e 4(1+4b)’ 
9b w2 
2 4@ [3w2 - (1 + 9b)@]2 [w2 - 3(1 + 9b)eI2 4[9w2 - (1 + b)eI2 ’ 

ew4 [3w2 + (1 + 9b)el + 3ew4 [a2 + 3( 1 + 9b)eI2 9@w4 [9w2 + (1 + b)@] .; = -- - - + 

w2 

e 
ew4[3w2 + (1 + 9b)el - 3ew4[w2 + 3( 1 + 9b)~]’ - 9@w4[9w2 + (1 + b ) ~ ]  

[w2 - 3( 1 + 9b)eI2 4[9w2 - (1 + b)@]* ’ B E = - +  
1302 - (1 + 9b)@12 

27b w2 4w4 2ew4 [4w2 + (1 + 16b)el a$ = -_ - - + ~ 

2 e 1 + 16b + [4w2-(1 + 16b)eI2 ’ 
9b 30.1’ 4w4 2@w4[4w2 + (1 + 16b)el ” = T + 7 - 1+16b + 

Since the coefficients ctf and P$ only appear in the fourth-order terms in Z, the 
frequency o can be replaced by the linear frequency 00. For 1-waves or combination 
waves, the linear frequency is given by 00’ = ~ ( l  + b). For 2-waves, it is given by 

[4w* - (1 + 16b)eI2 
. 

00’ = k@(l+4b). 
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